fokker_planck_test

moment_kinetics.fokker_planck_test.Cssp_fully_expanded_formMethod

Function calculating the fully expanded form of the collision operator taking as arguments the derivatives of $F_s$, $G_{s^\prime}$ and $H_{s^\prime}$. This function is designed to be used at the lowest level of a coordinate loop, with derivatives and integrals all previously calculated.

source
moment_kinetics.fokker_planck_test.G_MaxwellianMethod

Function computing G, defined by

\[\nabla^4 G = -\frac{8}{\sqrt{\pi}} F \]

with

\[F = c_{\rm ref}^3 \pi^{3/2} F_{\rm Maxwellian} / n_{\rm ref} \]

the normalised Maxwellian. See Plasma Confinement, R. D. Hazeltine & J. D. Meiss, 2003, Dover Publications, pg 184, Chpt 5.2, Eqn (5.49).

source
moment_kinetics.fokker_planck_test.H_MaxwellianMethod

Function computing H, defined by

\[\nabla^2 H = -\frac{4}{\sqrt{\pi}} F \]

with

\[F = c_{\rm ref}^3 \pi^{3/2} F_{\rm Maxwellian} / n_{\rm ref} \]

the normalised Maxwellian. See Plasma Confinement, R. D. Hazeltine & J. D. Meiss, 2003, Dover Publications, pg 184, Chpt 5.2, Eqn (5.49).

source
moment_kinetics.fokker_planck_test.eta_funcMethod

Function computing the normalised speed variable

\[\eta = \frac{\sqrt{(v_\| - u_\|)^2 + v_\perp^2}}{v_{\rm th}}\]

with $v_{\rm th} = \sqrt{2 p / n m}$ the thermal speed, and $p$ the pressure, $n$ the density and $m$ the mass.

source